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De�nitions

We shall de�ne ray directions with unit vectors n along the ray in the sense from the
detector to the atmosphere. The components of n will be given with respect to the usual
right-handed co-ordinate system XY Z with +Z pointing towards the centre of the earth
and +X pointing in the direction of 
ight. If the unit inward mirror normal is m, the ray
vector leaving the telescope and incident upon the scan mirror is t and the �nal ray vector
to the atmosphere is n then they are related by

n = t� 2 (t �m)m

t = n� 2 (n �m)m

m =
(t� n)p
2(1� n � t)

:

(1)

The signs of the components of n for atmospheric views are :
nx < 0 because of rearward view
ny can take either sign, but is negative on the sun-side for an afternoon equator
crossing
nz > 0 because the Earth is in the +Z direction
The speci�c de�nitions of the vectors m, n and t are as follows:

m =

0
@ cos�m cos �m
sin�m cos �m
� sin �m

1
A (2)

n =

0
@� cos�LOS cos �LOS
� sin�LOS cos �LOS

sin �LOS

1
A (3)

t =

0
@ cos�FOV cos(�POA + �FOV)
� sin�FOV cos(�POA + �FOV)

sin(�POA + �FOV)

1
A (4)

where �POA = 25:3�. These equations fully de�ne the angles involved, but for clarity the
following describes the de�nitions.
(i) The datum mirror position has the re
ecting surface parallel with the Y Z plane:

mdatum =

0
@ 1
0
0

1
A

(ii) The mirror is rotated from the datum mirror position to the position speci�ed by �m
and �m by rotating it through �m about the +Y axis (in a right-handed sense) followed
by �m about the +Z axis. These are exactly the rotations induced by motions about
the nominal gimbal axes (in other words, assuming perfect alignment between the
actual rotation axes and the co-ordinate system, and that the elevation axis is parallel
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with the mirror surface) and so �m and �m are the angles measured by the elevation
and azimuth encoders.

(iii) The �nal ray vector n is generated by applying to the �X axis rotations of �LOS about
the +Y axis followed by �LOS about the +Z axis.

(iv) The telescope ray vector t is generated either
a) by rotating the Projected Optical Axis (POA)

tPOA =

0
@ cos �POA

0
sin �POA

1
A

by �FOV about the �Y axis followed by �FOV about the �Z axis or
b) by rotating the +X axis by �POA + �FOV about the �Y axis followed by �FOV

about the �Z axis.
(v) The least geocentric distance R of the ray after leaving the instrument is

R = REOS cos �LOS = REOS

q
n2x + n2y (5)

where REOS is the orbit radius (see Fig 1). If the oblateness of the Earth is neglected
then the point of least geocentric distance is also the tangent point, and R�RE is the
atmospheric height at that point, where RE is the mean earth radius (RE = 6371 km).

Figure 1: Limb Viewing Geometry

Four points about the above de�nitions should be noted:
1) Increasing � implies decreasing R.
2) The subscript LOS denotes the line of sight of an arbitrary point in the instrument

�eld de�ned by �FOV and �FOV; ILOS is not used here as this is de�ned in the ITS as
the LOS of the POA.
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3) The rotations about the �Z and �Y axes in (iv) above are de�ned to ensure that
�FOV and �FOV increase for rays that are re
ected to increasing �LOS and �LOS.

4) Because the Z axis is not orthogonal to t, the rotation by �FOV about the �Z axis
generates a smaller angular change in t of roughly �FOV cos �POA. Thus, for example,
if the angular distance between two ends of a single channel FOV is 3.33 mrad, then
the azimuthal distance is 3.68 mrad.
For reference we give the rotation matrix from which embodies these de�nitions, for

a rotation of � about the +Y axis followed by � about the +Z axis:

0
@ cos� � sin� 0
sin� cos� 0
0 0 1

1
A
0
@ cos � 0 sin �

0 1 0
� sin � 0 cos �

1
A =

0
@ cos� cos � � sin � cos� sin �
sin� cos � cos� sin� sin �
� sin � 0 cos �

1
A

By operating on the appropriate vector, and with appropriate values of � and �, the
descriptions above can easily be shown to correspond to the actual vectors in (2) { (4).

For a spherical earth, the horizon is a line of constant �LOS, and the vertical through
any point on the earth's surface appears as a line of constant �LOS. (If oblateness and the
Earth's rotation are taken into account, neither of these statements is exactly true: the
vertical at a point is normal to the surface, but the horizon is not a line of constant �LOS.)

Figure 2a shows the points of intersection of the vectors n, �m and �t with a unit
sphere, with the mirror in the datum position, and the angles �FOV and �FOV = 0. The
laws of re
ection state �rstly that these vectors are coplanar, so that the points lie on a
great circle on the sphere, and secondly that the angles between them are equal. Figure
2b shows the displacement of these points from the datum position for positive values of
�FOV; �FOV; �m; �m.

Figure 2: Re
ection Geometry
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Results

Substituting (2) { (4) into (1) gives equations that de�ne �LOS and �LOS, or �FOV and
�FOV, or �m and �m in terms of the other angles:

sin �LOS = sin(�POA + �FOV) cos 2�m

+ cos(�POA + �FOV) sin 2�m cos(�m + �FOV)

sin(�LOS + �FOV) cos �LOS = sin 2(�m + �FOV) cos(�POA + �FOV) cos
2 �m

� sin(�m + �FOV) sin(�POA + �FOV) sin 2�m

(6)

sin(�POA + �FOV) = sin �LOS cos 2�m

� cos �LOS sin 2�m cos(�LOS � �m)

sin(�FOV + �LOS) cos(�POA + �FOV) = sin 2(�LOS � �m) cos �LOS cos
2 �m

+ sin(�LOS � �m) sin �LOS sin 2�m

(7)

sin �m =
sin ��

D cos ��

D sin�m cos �m = sin �� cos ��� cos �� sin �� tan �� tan ��

(8)

where, in (8):

D =

q
1 + tan2 �� sin2 ��= cos2 ��

�� = (�LOS + �POA + �FOV)=2

�� = (�LOS � �POA � �FOV)=2
�� = (�LOS + �FOV)=2

�� = (�LOS � �FOV)=2

Figure 3: Special Cases
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Although straightforward to solve numerically, these equations have no simple solution
except in two special cases. One of these is illustrated in Figure 3a, where the rays n and
t and the normal m lie in the same meridional plane.

���m + ���FOV = 0:
�LOS = �POA + �FOV + 2�m

�LOS = �m

The second is illustrated in Figure 3b, where the mirror normal lies in the horizontal
(XY ) plane.
���m = 0:

�LOS = �POA + �FOV

�LOS = 2�m + �FOV

These results suggest what we might term the zeroth approximation, namely that the scan
mirror simply scans the �eld of view in elevation and azimuth without distortion.

Zeroth Approximation:

�LOS = �POA + �FOV + 2�m

�LOS = 2�m + �FOV
(9)

This is consistent with both of the above cases but is not an exact solution of (6) { (8).
The fact that it is correct for �m = 0 over the whole range of �m, and that the required
range of �m is small suggests a �rst-order approximation in �m, where sin �m is replaced
by �m (in radians), cos �m by 1, and terms quadratic in �m are neglected. (In the case of
(8) the approximation is �rst order in ��.)

First-Order Approximation:

�LOS = �POA + �FOV + 2�m cos(�m + �FOV) (10a)

�LOS = 2�m + �FOV + 2�m sin(�m + �FOV) tan(�POA + �FOV) (10b)

�FOV = �LOS � �POA � 2�m cos(�LOS � �m) (11a)

�FOV = �LOS � 2�m � 2�m sin(�LOS � �m) tan �LOS (11b)

2�m =
(�LOS � �POA � �FOV)

cos ��
(12a)

2�m = �LOS � �FOV � 2�� tan �� tan �� (12b)

The above results are consistent with John Barnett's preliminary study (dated 16th
March 1990). Because of the di�erence in theoretical approach it is not straightforward
to compare equations directly between his study and (6), but direct comparison of the
numbers in his table with the results of (6) gives complete agreement, except that his
numbers seem not to be accurate to all quoted decimal places at zero azimuth, probably
because of the di�erent numerical method.

In the plots we shall compare the exact results derived from (6) with the approximate
results (9) and (10).
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Discussion

We shall divide the discussion of these results into three parts: we shall �rst consider the
e�ect of scanning on the ILOS, then the rotation of the �eld of view with scanning, and
�nally the implications for the error budget for �m and �FOV.

The ILOS nILOS is de�ned as the re
ected direction of the POA tPOA. The ILOS
elevation and azimuth �ILOS and �ILOS can thus be found from (6), setting �FOV and �FOV
to zero. Figure 4 shows the e�ect of scanning the mirror in �m at constant �m and �m
at constant �m, plotted in terms of �ILOS and height (R � RE) using (5) and (6). The
�gure is symmetrical about �ILOS = 0 and so only negative values of �ILOS are plotted.
Whereas the zeroth approximation would produce a rectangular grid, the distortion of the
scan pattern away from zero azimuth or elevation is obvious.

Figure 4: ILOS Scanning

The �rst-order approximation for �ILOS, �ILOS is found from (10):

�ILOS = �POA + 2�m cos�m (13a)

�ILOS = 2�m + 2�m sin�m tan �POA (13b)

The cos�m factor multiplying �m in (13a) gives a contraction of the vertical scan range at
non-zero azimuth, which is seen in the convergence of the lines of constant �m towards each
other, and the extra term involving �m in (13b) as compared with the zeroth approximation
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gives a slant to the lines of constant �m. Thus at least qualitatively Figure 4 is consistent
with the �rst-order approximation (13). The quantitative comparison is given in Figure 5,
which shows the error in the zeroth approximation, scanning �m at constant �m of �22�.
The dotted line shows the correction to the zeroth approximation given by the �rst-order
approximation (13). It is clear that while (13) is probably not su�ciently accurate for use
in retrievals, it is perfectly adequate for setting scan ranges, and error analysis.

Figure 5: Error in Zeroth Approximation

To consider the rotation of the �eld of view we calculate the angular di�erences be-
tween an LOS ray and the ILOS, �� = �LOS � �ILOS and �� = �LOS � �ILOS, in terms
of the angles �FOV and �FOV corresponding to some �xed point in the FOV. Subtracting
(13) from (10) gives the �rst-order approximation to these quantities, which we expand to
�rst order in the small angles �FOV and �FOV. In oder to write the result as a rotation we
need equal scale factors along both axes, so we use the angular separations corresponding
to the azimuthal distances, de�ned as  FOV = �FOV cos �POA and � = �� cos �LOS.

�
� 
��

�
=

�
1 2�m sin�m sec �POA

�2�m sin�m sec �POA 1

��
 FOV
�FOV

�
(14)

Equation 14 represents a rotation by an angle � = �2�m sin�m sec �POA. At �m =
�22� we �nd � � �m, which gives rise to a broadening of the vertical extent of the FOV of
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up to about 25% for an aspect ratio of 10:1, varying linearly with the mirror elevation. This
will certainly complicate the retrievals, and must also degrade the information content.

We can re-derive these �rst-order results with a quite di�erent approach. It is not
di�cult to show that the combination of a re
ection in a mirror with normal m followed
by a re
ection in a mirror with normal m0 is equivalent to a rotation 2 m ^m0m �m0,
which represents an angle of twice the angle between the normals, about an axis parallel
to the line of intersection of the mirror surfaces. This can be proved by multiplying out
the two re
ection matrices, and equating the result to a rotation matrix. The e�ect on
the FOV of rotating the scan mirror can be deduced from this theorem, as follows. The
resulting FOV can be found from the initial FOV by `unre
ecting' it in the initial mirror
position, and then re
ecting it in the �nal mirror position; the theorem shows that this
process is equivalent to a rotation. Thus the e�ect of scan mirror motion is just to rotate
the FOV about an axis, and no distortion is introduced. In two simple cases the results
are obvious:

(i) If the scan mirror rotates in elevation at zero azimuth, then the rotation axis lies in
the mirror surface, and is therefore the rotation axis of the theorem, and is also normal
to the ILOS, which therefore rotates at twice the angular speed of the mirror.

(i) If the scan mirror rotates in azimuth at zero elevation then the same conditions apply,
and again the ILOS rotates at twice the angular speed of the mirror.

However in the general case of an elevation scan at constant azimuth, while the rotation
axis is still in the plane of the mirror, it is not normal to the ILOS. For small angles �m
the rotation of the FOV can be decomposed vectorially as follows:

2�m (cos�mŷ � sin�mx̂) = 2�m cos�m (cos 2�mŷ � sin 2�mx̂)

+ 2�m sin�m tan �ILOS ẑ

� 2�m sin�m sec �ILOS nILOS:

(15)

The �rst term in (15) gives the scan in elevation, rotating the ILOS about a horizontal
axis normal to the ILOS, through an angle reduced by the factor cos�m, as in (13a). The
second term is a rotation about a vertical axis, giving the azimuthal slant to the elevation
scan through an angle 2�m sin�m tan �ILOS, as in (13b). The �nal term is a rotation about
the ILOS itself, rotating the FOV through an angle �2�m sin�m sec �ILOS, as in (14).

Finally we use our approximate results to determine the derived azimuth accuracy
requirements on �m and �FOV from LOS elevation accuracy requirements. Equation (10a)
gives us the sensitivity of the LOS elevation of a speci�ed detector to scan mirror and FOV
angles. Since �m and �FOV enter symmetrically:

@�LOS
@�m

=
@�LOS
@�FOV

= �2�m sin(�m + �FOV) :

The largest magnitude of this occurs at extreme elevations and azimuths and is about 1/40.
Thus if we consider an error budget allowance of 0.1 arc sec for elevation uncertainty from
this source, the corresponding requirement for knowledge of �m and �FOV is 4 arc sec.
This number needs to be taken together with the requirements on the orthogonality of the
mirror axes, and co-alignment of the mirror and spacecraft axes.
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